Sound Off: World Views and The Empowerment Factor

Co-Creating our Future

Leave a comment

Teleportation: Paving the Way

repost courtesy of Exploring Energy Evolution

Scientists Report Teleportation From One Location to Another

The concept of teleportation mainly stems from science fiction novels and movies, but what was once considered fantasy has been validated as reality in 2014. For some time, developments in quantum theory and general relativity physics have been made, leading up to recent breakthroughs which have opened up a wide arena of study in the future.   Read more   Filed under:   Posted by: 


Late Edition Add on

Physicists say energy can be teleported 'without a limit of distance'

A team of physicists has proposed a way of teleporting energy over long distances. The technique, which is purely theoretical at this point, takes advantage of the strange quantum phenomenon of entanglement where two particles share the same existence.

Keep in mind the far more comprehensive definitions, qualities and properties of Light, the quantity C, 186,000 mi/per sec energy differential, when pondering the nature of teleportation, entanglement, quantum jumping, wave/particle duality, simultaneity, and reference frames with their applicable properties to field propulsion:

Radius of Curvature of all Natural Law:

Light: 186,000 miles per second (energydifferential)
·       Light2: The Radius of Curvature of all Natural Law – a sine wave, positive/negative, characterizing the  nature of every natural law
·       Light3: The kinetic energy equivalent of the mass energy of matter
·       Light4: The Big Blink Inward – Gravitational, 186,000 per sec; Outward – Radiation, 186,000 per second
·       Light5:   Haramein / Rauscher’s (reference below) derivation that protons orbiting the nucleus of an atom at the speed of light in a vacuum are essentially a black hole

Quantum Entanglement, Quantum Jumping, Quantum Teleportation:

Nature: Deterministic quantum teleportation with atoms

Air Force Materiel Command  –  Edwards Air Force Base ca 93524-7048

Leave a comment

Moving Forward

We are now observing science at the forefront slowly merging back with common sense, natural law, and human history.

From the Torus to the Yin Yang, sacred geometry, colors, music, to energy of the vacuum, black holes, frequency and the quantity C (speed of light), more precise measurements are being made with greater comprehension and greater understanding.


MOVING FORWARD, replacing our skewed, outlandish, inappropriate and inapplicable high end theories of energy with new comprehension (example,  see QUANTUM GRAVITY AND THE HOLOGRAPHIC MASS  Download the Paper.), we can commence with engineering, testing and measurement of the applicable phase of the Torus – the yin yang sine wave nature of radius quantity C (radius of curvature of all natural law), as it plays along the wave, plus to minus differential between any two or more reference points:







“The circle of fifths”  The Resonance Project 

  Nassim Haramein   Music directly reflects the structure of space-time. Here we see how the musical system called “the circle of fifths” perfectly maps to the cube octahedron, or whatBuckminster Fuller called the “vector equilibrium” which is comprised of 6 pairs of equal and opposite vectors that perfectly  match the 6 pairs of tri-tones (the interval that divides the 12-tone musical scale perfectly in half).  We already have the fractal geometry of the structure of the vacuum of space encoded into our musical systems!  For more on the connection between music and Sacred geometry check-out this excellent website onCosmometry which explores the fractal holographic nature of the cosmos created by The Resonance Project‘s board member Marshall Lefferts :


WALTER RUSSELL:“………. All unfolding and refolding patterns are gyroscopically manipulated, electrically motivated and magnetically measured and controlled………………In the chemical elements, the sharps and flats are isotopes. These can be produced by man in greater numbers than Nature has produced them, for Nature does not begin to split her tones until she has passed two octaves beyond carbon. ….. malleability and conductivity await division in vast quantities from carbon and silicon. These will be found when science discards its concept of matter as being substance, and becomes aware of the gyroscopic control of motion which will split the carbon tone into isotopes as a musical tone is split into sharps and flats


Sympathetic Vibratory PhysicsIt’s a Musical Universe!
    sacred geometry & the flower of life pattern has been encoded as a ancient symbols in civilization’s art and documents around the world for thousands of years. A geometric solution for gravity has been right under our noses (and our paws) this whole time! 

Physics breakthrough: Is the universe a giant hologram?  full article

Astrophile: Trio of dead stars could take on Einstein

Breaking relativity: Celestial signals defy Einstein  Space-time is the fabric of the universe, perhaps of reality itself. But what is it? (Image: Sam Chivers) Strange signals picked up from black holes and distant supernovae suggest there’s more to space-time than Einstein believed. WE LIVE in an invisible landscape: a landscape that, although we cannot perceive it directly, determines everything that we see and do. Every object there is, from a planet orbiting the sun to a rocket coasting to the moon or a pencil dropped carelessly on the floor, follows its imperceptible contours. We battle against them each time we labour up a hill or staircase. This is the landscape of space-time: the underlying fabric of the physical universe, perhaps of reality itself. Although we don’t see its ups and downs, we feel them as the force we call gravity. Developed by the physicist Hermann Minkowski in the 20th century, and used by Albert …

The surprise theory of everything (full article)

Leave a comment

To Inquiry Lab: Questions on … “Field Propulsion”

   Peter Jocis   Peter Jocis  Facebook Forward

To Inquiry Lab: Questions on … “Field Propulsion”

I note excellent progress through the massive maze of miss-interpretations in Physics’ Standard Model of Reality have been advanced mathematically by the Haramein / Rauscher models. Simplifying through the use of geometry and frequency as common denominators, both the quantum and relativistic fields are beginning to merge, with more precise results. 

Extracts on some of the more predominant issues addressed in the Haramein / Rauscher models are reprinted below for further reference and contrast to StarSteps views towards field propulsion basics and application.

While the Haramein / Rauscher models add clarification details of the vacuum, paving the path to unlimited energy access at any point, progress towards application of field propulsion has remained stagnant since the 1940s, in spite of the Dual Torus 4 Blackhole / Yin & Yang merger recognition.

As measurement has no meaning except and unless measurement is taken between two or more specified reference points, I again question the role the quantity C, (VC energy differential), plays between any two or more specified reference points. (QC is the zero point energy differential in the sine wave of the yin yang symbol – defined as the maximum differential which can exist between two reference points in the factor which we call matter, or also defined as the minimum differential which can exist between a reference point in matter, and one in energy. This is only true, however, when the reference point in matter is at the same energy level as the observer).

The interpretations of black holes, white holes, both macro and micro, singularity, and event horizons come to mind as possibilities  existing between any two reference points, (taking scale variance into account across space time mass matter energy gravity factors) – similar to the Haramein / Rauscher derivation that protons orbiting the nucleus of an atom at the speed of light in a vacuum are essentially a black hole containing the mass of the entire universe inside every single atom, an approach much closer to reality.
We need a closer and expanded examination at substitutions within space time mass matter energy gravity factors through scale invariance, with the proper application of moving electric charges.
StarSteps adds the application measurement vehicle, the “Radius”, to the non-linearity of physical law and demonstrates precisely, the ‘relativity’ of total interdependence, interrelationships, between the natural laws – the changing of any one or more laws directly affects and causes changes to the others.
And as Haramein / Rauscher derived through separate calculations the equivalence of LIGHT (VC) to MASS, StarSteps shows Light (VC)’s equivalence to mass as ‘the kinetic energy equivalent of the mass energy of matter’, demonstrating precisely why Light (VC) also turns out to be the Radius of Curvature of All Natural Law .  (see
– Walter Russell’s “the speed of light is the limit at which motion can reproduce itself in curved wave fields before reaching zero where motion and curvature cease)

In the next post we will look at a simplified interpretation, of atoms to galaxies (4th grade layman’s level), from which the most advanced studies of physics can be extrapolated and predicted, devoid of outlandish pseudo interpretations. 

Review to date:

 Quantum Gravity and the Holographic Mass Nassim Haramein1*  ABSTRACT  Published 27 April 2013   We find an exact quantized expression of the Schwarzschild solution to Einstein’s field equations utilizing spherical Planck units in a generalized holographic approach. We consider vacuum fluctuations within volumes as well as on horizon surfaces, generating a discrete spacetime quantization and a novel quantized approach to gravitation. When applied at the quantum scale, utilizing the charge radius of the proton, we find values for the rest mass of the proton within 0.069×10−24 gm of the CODATA value and when the 2010 muonic proton charge radius measurement is utilized we find a deviation of 0.001×10−24 gm from the proton rest mass. We identify a fundamental mass ratio between the vacuum oscillations on the surface horizon and the oscillations within the volume of a proton and find a solution for the gravitational coupling constant to the strong interaction. We derive the energy, angular frequency, and period for such a system and determine its gravitational potential considering mass dilation. We find the force range to be closely correlated with the Yukawa potential typically utilized to illustrate the exponential drop-off of the confining force. Zero free parameters or hidden variables are utilized. 

A Scaling Law

The Rotational Dynamics in Haramein-Rauscher Metrics and the Monopolic Current

Resonance Project Foundation,§Tecnic Research Laboratory, 3500 S. Tomahawk Rd., Bldg. 188, Apache Junction, AZ 85219 USA 

Page —8  Resonance effects can be created by magnetic fields which vary in magnitude due to the periodic nature of the field of the electron, which is possibly generated by the vacuum lattice structure [5,20]. The topology of the Fermi surface governs the behavior of the electron in a magnetic field. The existence of the Fermi surface occurs because of the high density of electrons so that the Pauli exclusion principle dominates, wherein the electrons form a highly degenerate system in a quantum system for high density plasmons. The electron states are filled up to a certain level which is the Fermi energy. The Fermi surface is the constant energy surface of the Fermi energy, mapped out in momentum space [20]. Periodic forms exist within the surface due to the periodic nature of the lattice.   Page – 16   Energy can be generated in the vacuum in a number of ways from external sources. This energy activates and excites the vacuum state so that the vacuum becomes observable through electron-positron pair production. The external energy, such as high magnetic field strengths and strong gravitational fields near superdense astrophysical bodies such as black holes or supernovae excite the plasma. It is through the energetic plasma states that the vacuum properties become apparent and observable. Under specific conditions with the correct available energy, coherent excitation modes appear and are like charged solitons in their properties. The precise form of the nonlinearities that give rise to the soliton structure can be formulated in terms of the complexification of the set of relevant equations such as
Maxwell’s equations [38] or the Schrödinger equation [39]. The imaginary terms in these equations can be utilized to describe soliton coherent states. In reference [39], the effects of the actual coherent states and its application to the vacuum can be made. Boyer details the field theoretic approach to describe vacuum processes [40]. Also the experimental test of the existence of zero-point fluctuations is detailed, such as the Lamb shift, Casimir effect, and possible effects on long-range electromagnetic fields [41,42]………….. The role of vacuum energy processes –Very energetic processes cohere the vacuum and create real physical effects. The question is if one can enhance this coherence and utilize it to optimize macroscopically observable “energy shifted” states. It is clear that the vacuum plays a role in physically realized states. The question then becomes, can we enhance the role of the vacuum to form interesting and utilizable processes in materials with coherent excitations that would be observed as apparent ambient superconducting states [21]. Let us briefly give another example of the role of the vacuum in physical theory, for example in chromoelectrodynamics theory, where we represent the properties of the vacuum as a form of soliton called an instanton which is a time-dependent entity rather than space-dependent like a soliton. We treat the relationship between quantum electrodynamics, QED and quantum chromodynamics in separate papers [4,43-45]. In the chromodynamics theory of elementary particle physics, the charged particles are quarks and their fractional charge is called the “color” quantum number. The field quanta by which the quarks interact are called gluons. Instantons arise out of the solutions that describe the forces in the chromodynamic field. They are properties of the vacuum. Since the vacuum is defined as “zero energy” they are essentially “pseudo-particles”. But instanons have a real physical effect; in their presence the gluons “feel” forces arising from the non-empty vacuum [4,44,45]. Solitons are coherent in space and instantons are coherent in time. In work in progress, we address the strong force and color force as consequences of a quantum gravity where a torque term and Coriolis effects are incorporated in the Hamiltonian of a nonlinear Schrödinger equation.

 Gravitational potential and mass dilation drop off:  Physical Review & Research International, 3(4): 270-292, 2013 fig. 1. (a) The relativistic gravitational potential U resulting from mass dilation near the horizon r . (b) The Yukawa potential U typically given as the short range energy potential of the strong force where å is the hard-core surface potential and k is the inverse screening length (inverse Debye length)  From Fig. 1(a) we find that the gravitational potential from the mass dilation of a proton due to the angular velocity of an accelerated frame generates an asymptotic curve with a force potential drop-off as a function of r characteristic of the short range force of nuclear confinement equivalent to the Yukawa potential in Fig. 1(b). Therefore, we have derived a relativistic source for the confining energy with a quantum gravitational potential equivalent to the unification energy of a Schwarzschild mass or the holographic gravitational mass of the proton mh, yielding a gravitational coupling with a Yukawa-like short range, and the appropriate interaction time of the strong force tp , resulting in an analytical solution to confinement. These results are derived from first principles and classical considerations alone, with zero free parameters or hidden variables,
and extend our generalized holographic solution to generate a complete picture of confinement whether at the quantum scale or the cosmological scale of black holes. …………..We have generalized the holographic principle to considerations of
spherical tiling of Planck vacuum fluctuations within volumes as well as on horizon surfaces. From these discrete spacetime quantization relationships we extract the Schwarzschild solution to Einstein’s field equations, generating a novel quantized approach to gravitation……………….As a result, we predict a precise proton charge radius utilizing our holographic method which falls within the reported experimental uncertainty for the muonic measurement of the proton charge radius. More precise experiments in the future may confirm our predicted theoretical proton charge radius. We determine a fundamental constant ö defined by the mass ratio of vacuum oscillations on the surface horizon to the ones within the volume of the proton. As a result, clear relationships emerge between the Planck mass, the rest mass of the proton, and the Schwarzschild mass of the proton or what we term the holographic gravitational mass.

Physical Review & Research International, 3(4): 270-292, 2013 In 1916, Karl Schwarzschild published an exact solution to Einstein’s field equations for the gravitational field outside a spherically symmetric body [1,2]. The Schwarzschild solution  determined a critical radius, rs for any given mass where the escape velocity equals c , the speed of light. The region where r = rs is typically denoted as the horizon or event horizon and is given by the well known definition  2Gm r= (1)  where G is the gravitational constant, and m is the mass. John Archibald Wheeler in 1967 described this region of space as a “black hole” during a talk at the NASA Goddard Institute of Space Studies. In 1957 Wheeler had already, as an implication of general
relativity, theorized the presence of tunnels in spacetime or “wormholes” and in 1955, as a consequence of quantum mechanics, the concept of “spacetime foam” or “quantum foam” as a qualitative description of subatomic spacetime turbulence [3]. The theory predicts that the very fabric of spacetime is a seething foam of wormholes and tiny virtual black holes at the Planck scale as well as being the source of virtual particle production. In Wheeler’s own words: “The vision of quantum gravity is a vision of turbulence – turbulent space, turbulent time, turbulent spacetime… spacetime in small enough regions should not be merely “bumpy,” not merely erratic in its curvature; it should fractionate into ever-changing, multiply- connected geometries. For the very small and the very quick, wormholes should be as much a part of the landscape as those dancing virtual particles that give to the electron its slightly altered energy and magnetism [Observed as the Lamb shift].” [4]  On the cosmological scale, black hole singularities were initially thought to have no physical meaning and probably did not occur in nature. As general relativity developed in the late 20 century it was found that such singularities were a generic feature of the theory and evidence for astrophysical black holes grew such that they are now accepted as having physical existence and are an intrinsic component of modern cosmology. While the Schwarzschild solution to Einstein’s field equations results in extreme curvature at the origin and the horizon of a black hole, it is widely utilized to give appropriate results for many typical applications from cosmology to planetary physics. As a result, clear relationships emerge between the Planck mass, the rest mass of the proton, and the Schwarzschild mass of the proton or what we term the holographic gravitational mass. Further, we find that our derived fundamental constant 4ö2 generates the gravitational coupling constant to the strong interaction, thus defining the 
unification energy for confinement. We also derive the energy, angular frequency, and period for such a system utilizing our generalized holographic approach. We find that the period is on the order of the interaction time of particle decay via the strong force which is congruent with our derivation of the gravitational coupling constant. Moreover, the frequency of the system correlates well with the characteristic gamma frequency of the nucleon decay rate. Finally, we compute the gravitational potential resulting from the mass dilation of the system due to angular velocities as a function of radius and find that the gravitational force of such a system produces a force range drop-off closely correlated with the Yukawa potential typically utilized to define the short range of the strong interaction.  We demonstrate that a quantum gravitational framework of a discrete spacetime defined by spherical Planck vacuum oscillators can be constructed which applies to both cosmological and quantum scales. Our generalized holographic method utilizes zero free parameters and is generated from simple geometric relationships and algebra, yielding precise results for significant physical properties such as the mass of black holes, the rest mass of the proton, and the confining nuclear force.

Physical Review & Research International, 3(4): 270-292, 2013   The current QCD approach accounts for the remaining mass of the proton by the kinetic back reaction of massless gluons interacting with the confining color field  utilizing special relativity to determine masses. Yet it is critical to note that after almost a century of computation, there is still no analytical solution to the Lattice QCD model for confinement. This problem is thought to be one of the most obscure processes in particle physics and a Millennium Prize Problem from the Clay Mathematics Institute has been issued to find a resolution [23,24]. Since there is no analytical solution to LQCD and no framework for the energy source necessary for confinement, associating the remaining mass of the proton to the kinetic energy of massless gluons is based on tenuous tenets. Our results demonstrate that the holographic gravitational mass-energy of the proton mhis the unification energy scale for hadronic confinement and that the mass of nucleons is a direct consequence of vacuum fluctuations. Keeping in mind that a neutron quickly decays into a proton when free of the nucleus, we have therefore addressed the fundamental nature of the nucleon by deriving the proton rest mass and the confining force from holographic considerations. In future publications we will address the confinement string-like gluon jet flux tube structures of the QCD vacuum model as potentially arising from high curvature within the spacetime Planck vacuum collective behavior background, acting as vortices near the holographic screen topological horizon. This will be addressed utilizing an extended center vortex picture which has been significantly developed by ‘t Hooft [25] and in which the surface area of a Wilson loop is related to a confining force. In the next section, we explore the energy and angular frequency associated with our model  and we compute the gravitational potential range of our confining force utilizing special relativity. 

Leave a comment

Re: Four Principles to Inspire Innovation

 b 2 b2

We add the above, Looking beyond the illusion, Looking beyond the “flat” Standard Model of Physics,  to Marilyn’s 4 principles.   As in real life, a larger viewing point changed our belief from a constricted flat earth concept to a round world.   So too, in Physics’ Standard Model, the macro to micro Curve will be noted, whose radius is the quantity C, the velocity of light energy differential, whose significance we have yet to grasp.

Re: Four Principles to Inspire Innovation

December 10, 2013  Posted on Linkedin

Marillyn Hewson

CEO and President at Lockheed Martin

I think about the past, present and future of the aerospace industry, I keep coming back to innovation as the common thread. And while we all know about the great innovations of the past, the crucial question to answer for tomorrow is: How do we inspire continued innovation into the future?

I recently had the honor of delivering the 44th Wings Club “Sight” Lecture – an annual address that examines “hindsights, insights and foresights” of the aerospace industry – and I thought I’d share the takeaways from that speech with you, along with four principles that I believe are necessary to inspire innovation at any company.

1. Create a Climate Where People Can Do Their Best Work
2. Embrace the Best Ideas Regardless of Where They Come From
3. Embark on Missions That Matter With a Vision That Inspires
4. Exemplify Strong Values
These four principles have inspired – and continue to inspire – innovation at Lockheed Martin. I’m convinced that they can spark innovation at any company. What’s your strategy for driving innovation at your company?

Leave a comment

The Nonlinearity of Physical Law

Frequency vibration

The Nonlinearity of Physical Law

 Investigating the “Why” for the Big Screw Up in the Standard Model of Physics

“physicists have two ways of describing reality, quantum mechanics for the small world of particles and general relativity for the larger world of planets and black holes. But the two theories do not get along: attempts to combine their equations into a unified theory produce seemingly nonsensical answers” “…..Cats are both dead and alive, an infinitude of simultaneous existing universes, reality depends on what’s measured, or who’s observing, particles that signal each other across vast distances at speeds exceeding light”

Historically, as our boundaries expanded, the flat world was seen to be round.

What is not being “seen” and recognized, as Physics’ boundaries expanded – when size, mass, distance begin approaching the micro and macro domains where the CURVATURE, with the constant C radius, HAS TO BE ACCOUNTED FOR?

The natural laws are relative?  That is, the value of one can be altered between any two reference points by altering the value or relationship of the other. We defined space as that which separates bodies of matter, so we define time as that which separates events. (If there is no discernible separation in this respect, the events are said to be simultaneous.) Examining this concept carefully, we find that time follows the same curve of natural law which is apparent in the operation of all the basic factors of nature, and again the radius of that curvature is measured by the quantity C.

Mathematical/timing/observational error, or eyesight limitation? (The theory of relativity does not say that man cannot travel faster than the speed of light, it merely says that no one on earth will be able to ‘see’ him do it.)

The Simultaneous Issue? In referring to the problem of simultaneity in the introduction to his first book on relativity, Dr. Einstein pointed out that since our only contact with the world about us is through our senses, and since all of the knowledge which we have concerning the universe has come to us through them, if we are to formulate mathematical rules based upon our observations, we must begin with the postulate that the things which our senses tell us are true. If we should observe through a large telescope, the creation of a nova in a remote galaxy, and at the same time observe the eruption of a volcano upon our own earth, we must assume, for the purpose of our mathematics, that the two events are simultaneous (see detailed explanation on Time – StarSteps3)

A review of the definitions, for the purpose of measurement, will assist in defining Common Denominators in the major factors of Nature – space, time, mass, matter, energy, gravity (and fields in general) as represented by frequency.  (see Definitions)

curvedlaw d4a55-yen4tcmove

Moving away from a straight line to infinity, super-imposed space time coordinate systems, and a CURVED space, we will look at the nonlinearity of physical law itself.

 The Nonlinearity of Physical Law

The series of mathematical formula which Albert Einstein gave to the world in 1905, he called “A Theory of Special Relativity”. Einstein brought to our attention that the factors of Gravity, Space, Time and Energy were not absolute and independent entities, but that they were variable factors, each having a value which depended upon the value of others. Thus the first faint light of understanding began to filter through the dense screen of absolute determinism which had been erected about the physical science.

Unfortunately, science, instead of pursuing this bright gleam of truth, attempted, from force of habit, to mold it into the common pattern of knowledge, by reducing it to a mathematical formula, which could be used without the necessity of understanding it. Special Relativity was made into a “universal law of absolutes”.

We have ignored the forward with which Einstein prefaced the mathematics, and so have created the very thought blocks which he hoped to prevent. We will refer to this problem later on, but it might be wise first, to devote a little time to the consideration of what we will call “the non linearity of physical law”.

A few decades ago, our physical laws were considered to be linear. That is: we had, by trial and error, by observation and test, developed a set of laws which apparently held true for all of the small segment of nature, which we were able to observe at the time. We assumed, therefore, that these laws would hold true in any segment of nature, no matter how far removed from our point of observation.

When, however, the study of physics moved into the microcosm, that is, when we began to examine the interior of the atom, we found there a set of laws which did not agree with those to which we had been accustomed. They too appeared to be linear, but operated at an angle to our established laws. The same disturbing situation was discovered in the macrocosm. When our astronomers developed the giant telescope capable of peering many millions of light years into space, they found there, still another set of laws operating apparently at an angle to both of the others.

For a time, we attempted to accustom ourselves to the existence of three sets of physical laws, each

set linear within its own range of observation, but each set operating angularly with respect to the others. Then, with the development of the principles of relativity, we began to realize, or at least we should have realized, that these different sets of linear laws were not actually linear, nor were they different sets of laws. They were simply three widely separated segments of the one great curve of natural law.

As long as we were dealing with quantities which could be observed with the unaided eye or with simple instruments, we were unable to detect the curvature, because the segment we were observing constituted such a tiny portion of the curve that its deviation from linearity was too slight to be detected.

For most practical purposes connected with the ordinary mechanics of our daily lives, these laws are still considered to be linear. Calculations are simpler when they are so considered, and the resulting  error is negligible. For the same reason, a surveyor who is surveying a small residence lot does not find it necessary to take into consideration the curvature of the earth, because the error resulting from this neglect is not detectable even by the most sensitive of his instruments. If, however, the surveyor is to make accurate measurements of large areas such as a State or a Continent, it does become imperative to consider the curvature of the earth’s surface, and to do this, of course, it is necessary to have a reasonably accurate knowledge of the radius of that curvature.

The necessity of an accurate determination of the radius of curvature of the natural laws was first realized perhaps by the late Dr. Einstein, who devoted a large part of his life’s work to this problem. The results which he obtained have filled a number of text books, and have been of inestimable value in the progress of the physical science. They proved to be the key which opened the door to the utilization of nuclear energy, and have many other implications which are sensed but not yet completely understood.

As soon as a successful effort is made to reduce these mathematical formulae to simple concepts easily grasped by the mind, these concepts, together with the additional truths which will then  become self evident, will open the door to space travel with a surety and ease which we would now find hardly possible even to imagine.

The difficulty with our present mathematical approach to the problem of relativity lies not in any error of the mathematics themselves, but in the fact that the methods and terms used in the attempt to explain them, often lead to incorrect thinking and assumptions.

For example: the best known formula perhaps, which has emerged from the study of relativity, is the expression E =MC2, which simply states that the quantity of energy (in ergs) which is inherent in any mass, is equal to the number of grams of that mass, multiplied by the square of the quantity C. The quantity C is considered to be a constant, in fact the only constant which has survived in a relativistic world.

In almost every text book on physics in the world today the statement is made that the quantity C represents the velocity of light (in centimeters per second), yet every student in the world who has studied the subject, knows that the velocity of light is not a constant. That its velocity, in fact, varies slightly with each different medium through which it is propagated. Any student who has ever passed a beam of sunlight through a prism to produce a spectrum of color, has demonstrated that not only does the velocity of light vary in different media, but that the change in velocity varies somewhat with the frequency of the light when propagated in material media. This of course is the principal upon which all of our spectroscopes are designed, although most textbooks state merely that the light is refracted or `bent’ in passing from one medium to another. There are many who will dispute the statement that the change in velocity varies with the frequency, but when sufficiently precise tests are made entirely within a single medium, the results indicate convincingly that this is true. At this point most students will remark that the quantity C refers to the velocity of light in a perfect vacuum, but where in the universe can we find a perfect vacuum in which to test this assertion?

Astronomers and physicists have estimated that even in the remotest depths of intergalactic space there will probably be found, from three to seven nuclear or atomic particles per cubic centimeter. A  beam of light traveling at approximately 3×10(10) centimeters per second would still encounter a rather large number of such particles during each second of its journey. While it is true that the proportionate decrease in velocity which would be produced by this minute concentration of matter is so small that it might be negligible for all practical purposes of measurement, nevertheless it demonstrates the fact that we have chosen as our sole remaining constant, a quantity which actually can never be a perfect constant anywhere in the know universe.

Fortunately there is a value to which the quantity C can be assigned which is a constant. Moreover the assignment of the quantity C to this factor makes possible a much better understanding of the natural laws involved in the propagation of energy.

The quantity C is actually the kinetic energy equivalent of the mass energy of matter. In other words, if we take a gram (or any other quantity of matter: Newtonian mass) and convert that matter gradually into energy according to the formula E = MC2, and the resultant energy, as it appeared, were constantly applied to the remaining matter in such a way as to accelerate it uniformly in a given direction, when all the matter had been so converted we would find that we had zero Newtonian mass, infinite inertial mass and a resultant velocity equal to the quantity C, or approximately 3×10(10) centimeters per second (with respect to the given reference or starting point). The maximum velocity attained would always be the same regardless of the quantity of matter with which we started. This is a fact which can easily be verified by anyone who is mathematically inclined, and who is familiar with the laws of acceleration. The energy required to accelerate each gram of mass to the velocity C through energy conversion is exactly equal to total energy inherent in any matter having that mass.

This fact forms the true basis of the statement in our present day physics that the velocity C is a maximum or limiting velocity, since it represents the greatest kinetic energy differential which can exist between two given reference points. Since a good understanding of this concept is of great importance, it will be referred to again, and discussed more fully in the chapters on energy and matter.

Another assumption in the theories of relativity given to the world by Dr. Einstein, the natural laws, in general, are assumed to be linear, but the space in which they operate is considered to be “curved”. This concept offers the simplest mathematical presentation, since all of the deviations from linearity can thus be explained by a single postulate. Unfortunately, like most of our mathematical  presentations, the concept offers but little for the mind to grasp. A curved space cannot be pictured mentally, nor can it be drawn upon paper. The question always arises, if space is inside the curve, what is outside?

We have discovered that the linear mathematics which we commonly apply to the ‘laws’ or rules of nature, do not hold true when carried to an extent which permits the error to be measured, because they do not follow a straight line reaching to infinity, but a curve of finite radii. In a timeless universe, this curve, in any given plane, would be represented by a circle, but since the laws operate through time as well as space, the curve may be more readily understood if depicted as a “sine curve” or “wave”. The “base” line of the wave (which is the center line of the curve) represents zero, and the portions above and below the line represent the positive and negative aspects of the law.

Thus we see that there are points and conditions in which the natural laws reach zero value with respect to a given reference point, and that beyond these points the laws become negative, reversing their effect with respect to the observer.

The constant repetition of the term “reference point” or “observer” is necessary to emphasize the frequently unrecognized fact that none of the basic factors of nature have any reality or significance except when considered from a specified position or condition.

If, therefore, we exchange the existing mathematical postulate of linear laws operating in a curved space, for a concept based upon the curvature of natural law, we will find that we have not  invalidated or changed any of the presently accepted mathematics which we apply to these concepts. They can still be applied in the same way, and will give the same results.

By the exchange, however, we will have achieved a position from which the operation of the natural laws can be pictured by the mind, and can be charted upon paper. Our new perspective will allow us to take the mathematics past the velocity of light and infinite mass limits, past the disabled negative leg of gravity, and past the inappropriate explanations of our positive and negative mathematical frames of reference. It will take us past our limits and permit widespread application. And there is no more beautiful experience than when the world expands beyond its accustomed limits. Those are moments when reality takes on splendor.

For those that wish to read ahead:

1.      General Definitions – critical

2.      The Nonlinearity of Physical Law

3.      Gravity

4.      Matter and Mass

5.      Space

6.      The Quantity C

7.      Time